Loading [MathJax]/jax/output/HTML-CSS/config.js
THIS IS THE DEV/TESTING WEBSITE IPv4: 18.117.194.238 IPv6: || Country by IP: GB
Journals
Resources
About Us
Open Access

Risiko- und Notfallmanagement unter Unsicherheit - Teil 1

Risiko- und Notfallmanagement unter Unsicherheit - Teil 1

Year:    2011

Author:    Geldermann, Jutta, Bertsch, Valentin, Gering, Florian

Der Betriebswirt, Vol. 52 (2011), Iss. 1 : pp. 28–32

Abstract

Complex decision situations, such as in nuclear emergency and remediation management, require the consideration of technical, economic, ecological, socio-psychological and political aspects. Approaches for Multi-Criteria Decision Analysis (MCDA) help to take into account various incommensurable aspects and subjective preferences of the decision makers and thus contribute to transparency and traceability of decision processes. This paper focuses on the handling of uncertainties in such decision processes. Monte Carlo approaches can be used to model, propagate and finally visualise the uncertainties, as a case study on a hypothetical radiological accident scenario illustrates. In general, the presented approach can be adopted for any complex decision situation, especially for industrial emergencies. Further research would be necessary for the analysis of their consequences for entire supply chains.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    German

DOI:    https://doi.org/10.3790/dbw.52.1.28

Der Betriebswirt, Vol. 52 (2011), Iss. 1 : pp. 28–32

Published online:    2011-02

AMS Subject Headings:    Duncker & Humblot, Deutscher Betriebswirte-Verlag GmbH

Copyright:    COPYRIGHT: © Global Science Press

Pages:    5

Keywords:    Risiko- und Notfallmanagement unter Unsicherheit

Author Details

Geldermann, Jutta

Bertsch, Valentin

Gering, Florian

  1. Bertsch, V, Geldermann, J, Rentz, O. 2006. Multidimensional Monte Carlo Sensitivity Analysis in Multi-Criteria Decision Support. In: 9th IFAC Symposium on Automated Systems Based on Human Skill And Knowledge; Nancy.  Google Scholar
  2. Bertsch, V, Gering, F, Geldermann, J, Rentz, O. 2005. Modelling, Propagation and Visualisation of Uncertainties in the Real-time On-line Decision Support System RODOS. In: International Conference on Monitoring, Assessments and Uncertainties for Nuclear and Radiological Emergency Response; Rio de Janeiro, Brazil.  Google Scholar
  3. Bundesministerium für Umwelt, NuR. 1999. Übersicht über Maßnahmen zur Verringerung der Strahlenexposition nach Ereignissenmit nicht unerheblichen radiologischen Auswirkungen.  Google Scholar
  4. Ehrhardt, J, Präsler-Sauer, J, Schüle, O, Benz, G, Rafat, M, Richter, J. 1993. Development of RODOS, a Comprehensive Decision Support System for Nuclear Emergencies in Europe - an Overview; Radiation Protection Dosimetry.  Google Scholar
  5. Ehrhardt, J, Weiss, A. 2000. RODOS: Decision Support for Off-Site Nuclear Emergency Management in Europe. EUR19144EN; Luxembourg, European Community.  Google Scholar
  6. Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. Journal of Geophysical Research 99 (C5): 10143-10162.  Google Scholar
  7. Ewers, H-J, Rennings, K. 1995. Ökonomie des Strahlenschutzes. In: Handbücher zur angewandten Umweltfoschung: Handbuch zur Umweltökonomie, Junkernheinrich, M, Klemmer, P, Wagner, G R (eds.): 183-187; Analytica; Berlin.  Google Scholar
  8. French, S, Bartzis, J, Ehrhardt, J, Lochard, J, Morrey, M, Papamichail, N, Sinkko, K, Sohier, A. 2000. RODOS: Decision support for nuclear emergencies. In: Recent Developments and Applications inDecisionMaking, Zanakis, S H, Doukidis, G, Zopounidis, G (eds.): 379-394; Kluwer Academic Publishers; Dordrecht.  Google Scholar
  9. French, S, Bedford, T, Atherton, E. 2005. Supporting ALARP decision-making by Cost Bene*t Analysis and Multi-Attribute Utility Theory. Journal of Risk Research 8(3): 207-223.  Google Scholar
  10. French, S, Niculae, C. 2005. Believe in the Model: Mishandle the Emergency. Journal of Homeland Security and Emergency Management 2(1).  Google Scholar
  11. French, S. 1995. Uncertainty and imprecision: Modelling and Analysis. Journal of the Operational Research Society 46: 70-79.  Google Scholar
  12. French, S. 1996. Multi-attribute decision support in the event of a nuclear accident. Journal ofMulti Criteria Decision. Analysis 5: 39-57.  Google Scholar
  13. Geldermann, J, Bertsch, V, Treitz, M, French, S, Papamichail, KN, Hämäläinen, RP. 2006. Multi-criteria Decision Support and Evaluation of Strategies for Nuclear Remediation Management. OMEGA - The International Journal of Management Science (accepted).  Google Scholar
  14. Gering, F. 2005. Data assimilation methods for improving the prognoses of radionuclide deposition from radioecological models with measurements. Leopold-Franzens-Universität Innsbruck.  Google Scholar
  15. Ghil, M, Malanotte-Rizzoli, P. 1991. Data assimilation in meteorology and oceanography. Advances in Geophysics 33: 141-266.  Google Scholar
  16. Kalman, RE, Bucy, RS. 1961. New results in linear filtering and prediction. Journal of Basic Engineering (ASME) 83(D): 95-108.  Google Scholar
  17. Kalman, RE. 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering (ASME) 82(D): 35-45.  Google Scholar
  18. Karl, H. 1995. Umweltrisiken. In: Handbücher zur angewandten Umweltfoschung: Handbuch zur Umweltökonomie, Junkernheinrich, M, Klemmer, P, Wagner, G R (eds.): 327ff.  Google Scholar
  19. Lindauer, E. 2005. Welche Bedeutung haben Betriebsstörungen und Störfälle in Kernkraftwerken?: http://www.walterbauer.org/physik/download/fip/meldepflichtige-ereignisse.pdf  Google Scholar
  20. Morgan, MG, Henrion, M. 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge University Press; New York.  Google Scholar
  21. Mustajoki, J, Hämäläinen, RP. 2000.Web-HIPRE: Global Decision Support by Value Tree and AHP Analysis. INFOR 38(3): 208-220.  Google Scholar
  22. Raskob, W, Bertsch,V, Geldermann, J, Baig, S, Gering, F. 2005b. Demands to and experience with the Decision Support System RODOS for off-site emergency management in the decision making process in Germany. In: Proceedings of the Second International ISCRAM Conference; Brussels, Belgium.  Google Scholar
  23. Raskob,W, Baig, S, Duranova, T, Hoe, S, Potemski, S, Rojas-Palma, C. 2005a. Information being available to decision makers in di$erent phases of a nuclear emergency. In: „Transparent and traceable decision making in off-site nuclear emergencies“, Dissemination of achievements in the EVATECH Project of the FP5 Fission Programme; Brussels, Belgium.  Google Scholar
  24. Tilmes, S. 1999. Verfahren zur Analyse von Messungen atmosphärischer Spurengase mit dem Ziel der Assimilation in Chemie-Transportmodellen. Deutscher Wetterdienst; Offenbach am Main  Google Scholar
  25. UNSCEAR. 2000. Source and E$ects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (eds.) UNSCEAR 2000 Report to the General Assembly, Annex J; New York.  Google Scholar
  26. Wergen, W, Buchhold, M. 2002. Datenassimilation für das Globalmodell GME.; promet 27(3/4): 150-155.  Google Scholar
  27. Wergen, W. 2002. Datenassimilation - ein Überblick. promet 27(3/4): 142-149.  Google Scholar

Section Title Page Action Price
Jutta Geldermann / Valentin Bertsch / Florian Gering: Risiko- und Notfallmanagement unter Unsicherheit am Beispiel der Planung effizienter Maßnahmen nach kerntechnischen Störfällen (Teil 1) 28
Summary 28
1 Einführung 28
2 Betriebsstörungen und Störfälle in Kernkraftwerken 29
3 Grenzen der Quantifizierbarkeit der Folgen radioaktiver Strahlenexposition 29
I. Expositionspfade 30
II. Notfallschutzmaßnahmen 30
4 Das Entscheidungsunterstützungssystem RODOS 31
5 Datenassimilation bei der Abschätzung radioaktiver Kontamination 32
Anmerkungen 33
Literatur 33